Conditional Risk Minimization for Stochastic Processes

نویسندگان

  • Alexander Zimin
  • Christoph H. Lampert
چکیده

We study the task of learning from non-i.i.d. data. In particular, we aim at learning predictors that minimize the conditional risk for a stochastic process, i.e. the expected loss taking into account the set of training samples observed so far. For non-i.i.d. data, the training set contains information about the upcoming samples, so learning with respect to the conditional distribution can be expected to yield better predictors than one obtains from the classical setting of minimizing the marginal risk. Our main contribution is a practical estimator for the conditional risk based on the theory of non-parametric time-series prediction, and a finite sample concentration bound that establishes exponential convergence of the estimator to the true conditional risk under certain regularity assumptions on the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of green supply chain network, considering uncertain demand and stochastic CO2 emission level

Many supply chain problems involve optimization of various conflicting objectives. This paper formulates a green supply chain network throughout a two-stage mixed integer linear problem with uncertain demand and stochastic environmental respects level. The first objective function of the proposed model considers minimization of supply chain costs while the second objective function minimizes CO...

متن کامل

Learning Theory for Conditional Risk Minimization

In this work we study the learnability of stochastic processes with respect to the conditional risk, i.e. the existence of a learning algorithm that improves its next-step performance with the amount of observed data. We introduce a notion of pairwise discrepancy between conditional distributions at different times steps and show how certain properties of these discrepancies can be used to cons...

متن کامل

Portfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization

Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...

متن کامل

Robust portfolio selection with polyhedral ambiguous inputs

 Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.02706  شماره 

صفحات  -

تاریخ انتشار 2015